Abstract
The properties of steady two-dimensional flow past an elliptic cylinder inclined to the oncoming stream are investigated for small to moderate values of the Reynolds number for which good accuracy can be assured. The solutions are based on a numerical method of solution of the Navier-Stokes equations for incompressible fluids which ensures that all the correct conditions of the problem are satisfied. In particular, the solution is carried out in such a way that the vorticity decays rapidly enough at large distances from the cylinder for the lift and drag on the cylinder to be finite. Results are presented for the variation of lift, drag and streamline patterns with inclination and Reynolds number. Two elliptic cylinders (based on their minor-to-major axes ratio) are considered. For an elliptic cylinder with minor-to-major axes ratio 1:5, results are obtained for Reynolds numbers up to 40 and inclination varying from zero to 90°. Streamline plots for these results show a development of the solution from asymmetric flow at zero inclination (with no separation), through asymmetric flows with increasing inclination (with either no separation, separation with a single recirculating region, or separation with two recirculatory regions) to the symmetric flow at 90° incidence (with two counter rotating vortices). Of interest are asymmetric steady-state results which contain two recirculatory regions trailing the cylinder, one attached and one unattached to the cylinder. Results are also obtained for a second elliptic cylinder with minor-to-major axes ratio 1:10 at Reynolds numbers 15 and 30, inclination 45°. These results are found to be in good agreement with corresponding unsteady results taken to long times (which are tending to a steady state).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.