Abstract

The flow of steady, incompressible, viscous, electrically conducting fluid past a sphere in the presence of an uniform magnetic field parallel to the undisturbed flow is investigated using the finite difference method. The multigrid method with defect correction technique is used to achieve the second order accurate solution. The Hartmann number, M is used as the perturbation parameter. It is found that the increase of magnetic field decreases the wake length and increases the drag coefficient. The graphs of streamlines, vorticity lines, drag coefficient, surface pressure and surface vorticity are presented and discussed. Keywords: Navier-Stokes equations, MHD, Hartmann number, Multigrid method, Defect correctionInternational Journal of Engineering, Science and Technology, Vol. 6, No. 1, 2014, pp

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.