Abstract

In this article, the flow and heat transfer of Eyring Powell fluid over a continuously moving surface in the presence of a free stream velocity are investigated. Convective boundary conditions have been used in the problem formulation. The solution for velocity and temperature are computed by applying the homotopy analysis method (HAM). The effects of emerging fluid parameters (ϵ), (δ) and Prandtl number (Pr) on the velocity and temperature are illustrated through graphs and tables for different values of λ. It is found that the boundary layer thickness is an increasing function of (ϵ) and decreasing function of (δ). However the temperature and thermal boundary layer thickness decrease when the values of (ϵ) and (δ) are increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.