Abstract
A two-dimensional flow of a non-Newtonian power-law fluid directed normally to a horizontal cylinder with a square cross section is considered in the present paper. The problem is investigated numerically with a finite volume method by using the commercial code Ansys Fluent with a very large computational domain so that the flow could be considered unbounded. The investigation covers the power-law index from 0.1 to 2.0 and the Reynolds number range from 0.001 to 45.000. It is found that the drag coefficient for low Reynolds numbers and low power-law index (n ≤ 0.5) obeys the relationship C D = A/Re. An equation for the quantity A as a function of the power-law index is derived. The drag coefficient becomes almost independent of the power-law index at high Reynolds numbers and the wake length changes nonlinearly with the Reynolds number and power-law index.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Applied Mechanics and Technical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.