Abstract

A model symmetric bifurcation was employed to simulate steady expiratory flow in the upper part of the human central airways. A two color, two component laser Doppler anemometer was used to measure both the axial flow and the secondary flow at three different Reynolds numbers of 518, 1036, and 2089, corresponding to Dean numbers of 98, 196, and 395. The test section is a symmetric bifurcation of constant cross-sectional area with a branching angle of 70 degrees. The flow rate into the two daughter branches was about the same. Results show that in the junction plane, velocity profiles in the daughter branches are skewed towards the inner walls. In the parent tube, just downstream of the flow divider, the velocity profile is biconcave with a dip at the center but this is rapidly transformed into a velocity peak. In a plane transverse to the bifurcation plane, parabolic velocity distribution was conserved through the daughter branches. In the parent tube, the transverse profiles became flat downstream of the flow divider and developed a defect at the center further downstream towards the end of the parent tube part of the bifurcation. The velocity defect was confined to a small region in the vicinity of the centerline. Helical motion typified by symmetric vortices was observed in the daughter branches. In the parent tube, a set of four vortices induced by the turning of the flow was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call