Abstract

One of the remedies to reduce the major emissions production of nitric oxide (NOx), carbon monoxide (CO) and unburned hydrocarbon (UHC) from conventional gas turbine engine combustors at both high and low operating conditions without losing its performance and stability is to use variable geometry combustors. This type of combustor configuration provides the possibility of dynamically controlling the airflow distribution of the combustor based on its operating conditions and therefore controlling the combustion in certain lean burn conditions. Two control schemes are described and analyzed in this paper: both are based on airflow control with variable geometry, the second including fuel staging. A model two-spool turbofan engine is chosen in this study to test the effectiveness of the variable geometry combustor and control schemes. The steady and dynamic performance of the turbofan engine is simulated and analyzed using an engine transient performance analysis code implemented with the variable geometry combustor. Empirical correlations for NOx, CO and UHC are used for the estimation of emissions. Some conclusions are obtained from this study: • With variable geometry combustors significant reduction of NOx emissions at high operating conditions and CO and UHC at low operating condition is possible; • Combustion efficiency and stability can be improved at low operating conditions, which is symbolized by the higher flame temperature in the variable geometry combustor; • The introduced correlation between non-dimensional fuel flow rate and air flow ratio to the primary zone is effective and simple in the control of flame temperature; • Circumferential fuel staging can reduce the range of air splitter movement in most of the operating conditions from idle to maximum power and have the great potential to reduce the inlet distortion to the combustor and improve the combustion efficiency; • During transient processes, the maximum moving rate of the hydraulic driven system may delay the air splitter movement but this effect on engine combustor performance is not significant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call