Abstract

Activation of the cyclin-dependent kinase cdc2-cyclin B1 at the G2/M transition of the cell cycle requires dephosphorylation of threonine-14 and tyrosine-15 in cdc2, which in higher eukaryotes is brought about by the Cdc25C phosphatase. In Xenopus, there is evidence that a kinase cascade comprised of xPlkk1 and Plx1, the Xenopus polo-like kinase 1, plays a key role in the activation of Cdc25C during oocyte maturation. In the mammalian somatic cell cycle, a polo-like kinase homologue (Plk1) also functions during mitosis, but a kinase upstream of Plk is still unknown. We show here that human Ste20-like kinase (SLK), which is a ubiquitously expressed mammalian protein related to xPlkk1, can phosphorylate and activate murine Plk1. During progression through the G2 phase of the mammalian cell cycle, the activity of endogenous SLK is increased. The amount of SLK protein is decreased in quiescent and differentiating cells. Treatment with okadaic acid induces a phosphorylation-dependent enhancement of SLK activity. We propose that SLK has a role in the regulation of Plk1 activity in actively dividing cells during the somatic cell cycle. SLK itself is suggested to be regulated by phosphorylation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.