Abstract

SLK is essential for embryonic development and may play a key role in wound healing, tumor growth, and metastasis. Expression and activation of SLK are increased in kidney development and during recovery from ischemic acute kidney injury. Overexpression of SLK in glomerular epithelial cells/podocytes in vivo induces injury and proteinuria. Conversely, reduced SLK expression leads to abnormalities in cell adhesion, spreading, and motility. Tight regulation of SLK expression thus may be critical for normal renal structure and function. We produced podocyte-specific SLK-knockout mice to address the functional role of SLK in podocytes. Mice with podocyte-specific deletion of SLK showed reduced glomerular SLK expression and activity compared with control. Podocyte-specific deletion of SLK resulted in albuminuria at 4-5 mo of age in male mice and 8-9 mo in female mice, which persisted for up to 13 mo. At 11-12 mo, knockout mice showed ultrastructural changes, including focal foot process effacement and microvillous transformation of podocyte plasma membranes. Mean foot process width was approximately twofold greater in knockout mice compared with control. Podocyte number was reduced by 35% in knockout mice compared with control, and expression of nephrin, synaptopodin, and podocalyxin was reduced in knockout mice by 20-30%. In summary, podocyte-specific deletion of SLK leads to albuminuria, loss of podocytes, and morphological evidence of podocyte injury. Thus, SLK is essential to the maintenance of podocyte integrity as mice age.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.