Abstract
Spike-timing-dependent plasticity (STDP) is a general rule of synaptic plasticity based on precise spike timings. The common form of STDP strengthens synaptic weights most when a presynaptic spike time precedes a postsynaptic spike time by a small amount of time. Even though various neural computations can be implemented by STDP, the relation between STDP and synchronous firing remains elusive. With synchrony kept in mind, here we analyze neural networks driven by a pacemaker in the oscillatory scheme. We show that STDP promotes formation of a feedforward network whose root is the pacemaker. Neurons fire slightly after the pacemaker does, and therefore frequency synchrony is achieved. Remarkably, the synaptic weights necessary for frequency synchrony are much smaller with STDP than without STDP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.