Abstract

beta-TrCP is the F-box protein component of an Skp1/Cul1/F-box (SCF)-type ubiquitin ligase complex. Biochemical studies have suggested that beta-TrCP targets the oncogenic protein beta-catenin for ubiquitination and followed by proteasome degradation. To further elucidate the basis of this interaction, a complex between a 32-residue peptide from beta-catenin containing the phosphorylated motif DpSGXXpS (P-beta-Cat17-48) and beta-TrCP was studied using Saturation Transfer Difference (STD) Nuclear Magnetic Resonance (NMR) experiments. These experiments make it possible to identify the binding epitope of a ligand at atomic resolution. An analysis of STD spectra provided clear evidence that only a few of the 32 residues receive the largest saturation transfer. In particular, the amide protons of the residues in the phosphorylated motif appear to be in close contact to the amino acids of the beta-TrCP binding pocket. The amide and aromatic protons of the His24 and Trp25 residues also receive a significant saturation transfer. These findings are in keeping with a recently published x-ray structure of a shorter beta-catenin fragment with the beta-TrCP1-Skp1 complex and with the earlier findings from mutagenesis and activity assays. To better characterize the ligand-protein interaction, the bound conformation of the phosphorylated beta-catenin peptide was obtained using TRansfer Nuclear Overhauser Effect SpectroscopY (TRNOESY) experiments. Finally, we obtained the bound structure of the phosphorylated peptide showing the protons identified by STD NMR as exposed in close proximity to the molecule surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.