Abstract

Background and ObjectiveEarly diagnosis of mild cognitive impairment (MCI) is one of the essential measures to prevent its further development into Alzheimer's disease (AD). In this paper, we propose a hybrid deep learning model for early diagnosis of MCI, called spatio-temporal convolutional gated recurrent unit network (STCGRU). MethodsThe STCGRU comprises three bespoke convolutional neural network (CNN) modules and a bi-directional gated recurrent unit (BiGRU) module, which can effectively extract the spatial and temporal features of EEG and obtain excellent diagnostic results. We use a publicly available EEG dataset that has not undergone pre-processing to verify the robustness and accuracy of the model. Ablation experiments on STCGRU are conducted to showcase the individual performance improvement of each module. ResultsCompared with other state-of-the-art approaches using the same publicly available EEG dataset, the results show that STCGRU is more suitable for early diagnosis of MCI. After 10-fold cross-validation, the average classification accuracy of the hybrid model reached 99.95 %, while the average kappa value reached 0.9989. ConclusionsThe experimental results show that the hybrid model proposed in this paper can directly extract compelling spatio-temporal features from the raw EEG data for classification. The STCGRU allows for accurate diagnosis of patients with MCI and has a high practical value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call