Abstract
Change detection in urban areas can be helpful for urban resource management and smart city planning. The effects of human activities on the environment and ground have gained momentum over the past decades, causing remote sensing data sources analysis (such as satellite images) to become an option for swift change detection in the environment and urban areas. We proposed a semi-transfer learning method of EfficientNetV2 T-Unet (EffV2 T-Unet) that combines the effectiveness of composite scaled EfficientNetV2 T as the first path or encoder for feature extraction and convolutional layers of Unet as the second path or decoder for reconstructing the binary change map. In the encoder path, we use EfficientNetV2 T, which was trained by the ImageNet dataset. In this research, we employ two datasets to evaluate the performance of our proposed method for binary change detection. The first dataset is Sentinel-2 satellite images which were captured in 2017 and 2021 in urban areas of northern Iran. The second one is the Onera Satellite Change Detection dataset (OSCD). The performance of the proposed method is compared with YoloX-Unet families, ResNest-Unet families, and other well-known methods. The results demonstrated our proposed method’s effectiveness compared to other methods. The final change map reached an overall accuracy of 97.66%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.