Abstract

An innovative neurodynamical model of epidemics in social networks – the Neuro-SIR – is introduced. Susceptible–Infected–Removed (SIR) epidemic processes are mechanistically modeled as analogous to the activity propagation in neuronal populations. The workings of infection transmission from individual to individual through a network of social contacts, is driven by the dynamics of the threshold mechanism of leaky integrate-and-fire neurons. Through this approach a dynamically evolving landscape of the susceptibility of a population to a disease is formed. In this context, epidemics with varying velocities and scales are triggered by a small fraction of infected individuals according to the configuration of various endogenous and exogenous factors representing the individuals’ vulnerability, the infectiousness of a pathogen, the density of a contact network, and environmental conditions. Adjustments in the length of immunity (if any) after recovery, enable the modeling of the Susceptible–Infected–Recovered–Susceptible (SIRS) process of recurrent epidemics. Neuro-SIR by supporting an impressive level of heterogeneities in the description of a population, contagiousness of a disease, and external factors, allows a more insightful investigation of epidemic spreading in comparison with existing approaches. Through simulation experiments with Neuro-SIR, we demonstrate the effectiveness of the #stayhome strategy for containing Covid-19, and successfully validate the simulation results against the classical epidemiological theory. Neuro-SIR is applicable in designing and assessing prevention and control strategies for spreading diseases, as well as in predicting the evolution pattern of epidemics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call