Abstract
This review focuses on a status report on the science and technology of ultrananocrystalline diamond (UNCD) films developed and patented at Argonne National Laboratory. The UNCD material has been developed in thin film form and exhibit multifunctionalities applicable to a broad range of macro to nanoscale multifunctional devices. UNCD thin films are grown by microwave plasma chemical vapor deposition (MPCVD) or hot filament chemical vapor deposition (HFCVD) using new patented Ar-rich/CH 4 or H 2/CH 4 plasma chemistries. UNCD films exhibit a unique nanostructure with 2–5 nm grain size (thus the trade name UNCD) and grain boundaries of 0.4–0.6 nm for plain films, and grain sizes of 7–10 nm and grain boundaries of 2–4 nm when grown with nitrogen introduced in the Ar-rich/CH 4 chemistry, to produce UNCD films incorporated with nitrogen, which exhibit electrical conductivity up to semi-metallic level. This review provides a status report on the synthesis of UNCD films via MPCVD and integration with dissimilar materials like oxides for piezoactuated MEMS/NEMS, metal films for contacts, and biological matter for a new generation of biomedical devices and biosensors. A broad range of applications from macro to nanoscale multifunctional devices is reviewed, such as coatings for mechanical pumps seals, field-emission cold cathodes, RF MEMS/NEMS resonators and switches for wireless communications and radar systems, NEMS devices, biomedical devices, biosensors, and UNCD as a platform for developmental biology, involving biological cells growth on the surface. Comparisons with nanocrystalline diamond films and technology are made when appropriate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.