Abstract

The state of the art of a small modular reactor concept with a suspended core is presented. The reactor design is based on a fluidized bed concept and utilizes pressurized water reactor technology. The fuel is automatically removed from the reactor by gravity under any accident conditions. The reactor demonstrates the characteristics of inherent safety and passive cooling. Here two options for modification to the original design are proposed to increase the stability and thermal efficiency of the reactor. A modified version of the reactor involves the choice of supercritical steam as the coolant to produce a plant thermal efficiency of about 40%. Another option is to modify the shape of the reactor core to produce a non-fluctuating bed and, consequently, guarantee the dynamic stability of the reactor. The mixing of tantalum in the fuel is also proposed as an additional inhibition to the power excursion. The spent fuel pellets may not be considered nuclear waste, since they are of a shape and size that can easily be used as a source of radiation for food irradiation and industrial applications. The reactor can easily operate as a plutonium burner or can operate with a thorium fuel cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call