Abstract

The assessment of the absolute \(\nu\) mass scale is a crucial challenge in today’s particle physics and cosmology. The only experimental method which can provide a model-independent measurement is the investigation of endpoint distortion in beta/electron capture spectra. \(^{163}\)Ho is a good choice thanks to its low electron capture Q value (about 2.8 keV), the proximity of the end-point to resonance M1 and its half-life (4570 years). The HOLMES experiment will exploit a calorimetric measurement of \(^{163}\)Ho decay spectrum deploying a large set of cryogenic micro-calorimeters containing implanted \(^{163}\)Ho. In order to get the best experimental sensitivity, it is crucial to combine high activity with very small undetected pileup contribution. Therefore, the main tasks of the experiment consist of: the development of about 1000 fast (3 \(\mu\)s time resolution) cryogenic micro-calorimeters characterized by extraordinary energy resolution (down to few eV); the embedding of \(^{163}\)Ho source inside the calorimeters, avoiding to spoil detectors’ thermodynamical properties (mainly heat capacity) and preventing pileup issues. Moreover, it is also necessary to avoid contamination from other radionuclides, mainly \(^{166m}\)Ho. Finally, an efficient high-bandwidth multiplexed readout has to be developed. The commissioning of the first implanted array is currently ongoing; the first data acquisition is expected to start in fall 2022. Here, the status of the experiment and the first results of detector commissioning will be discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.