Abstract
The Levitated Dipole Experiment (LDX) is a novel concept that examines plasma compressibility as a method for stable magnetic confinement of fusion grade plasmas. The experiment uses a 0.8 m diameter ring-type dipole coil that is levitated at the center of a 5 m diameter /spl times/ 3 m tall vacuum chamber to confine the plasma. This persistent mode, floating coil is wound from a prereacted Nb/sub 3/Sn conductor and encased in a toroidally shaped, constant volume helium cryostat to eliminate external connections to the coil during levitated operation. Although the peak field on the inductively charged floating coil is only 5.3 T, a Nb/sub 3/Sn conductor was selected because of its higher temperature capability. The cryostat, with on-board helium supply, is designed for 6-8 hours of levitated operation as the heat leak gradually warms the coil from 5 to 10 K. The cryostat consists of three concentric shells: a sealed, high pressure Inconel helium vessel that contains the floating coil and heat exchangers that are used to recool the coil before operation, a high heat capacity fiberglass-lead radiation shield, and an outer vacuum shell. The shells are kept separated by a support system designed to withstand impact forces up to 10 g in the case of a levitation failure. The paper summarizes the manufacture and initial driven-mode test of the floating coil, and describes the design, manufacture and test of the cryostat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.