Abstract

In this paper we present current status of the Booster Synchrotron for the Duke FEL storage ring. The Booster which is recently under design, fabrication and construction, will provide full energy injection into the storage ring at energy from 0.3 to 1.2 GeV. The Duke storage ring FEL (SR FEL) operates in lasing mode with 193-700 nm wavelength range. The geometry of the Duke SR FEL provides for interacting head-on collision of e-beam and FEL photons. This mode of operation is used to generate intense beams of /spl gamma/-rays from 2 MeV to about 200 MeV (currently from 2 MeV to 58 MeV). Generation of /spl gamma/-rays with energy exceeding 20 MeV causes the loss of electrons, which will be replaced by injection from the Booster operating in a top-off mode. The paper presents design and status for elements of magnetic system and vacuum system, as well as design and parameters of fast extraction kicker with 11 nS pulse duration. All these element are designed and will be fabricated by Budker Institute of Nuclear Physics, Novosibirsk, Russia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.