Abstract

Babesia bigemina infection (also known as Texas fever) is reported as the most prevalent and main causative agent of bovine babesiosis, worldwide. The current study was undertaken to assess indicators of oxidative stress including activities of antioxidant enzymes and total antioxidant capacity (TAC), oxidation status of biomolecules and serum levels of trace elements as well as indicators of inflammation including sialic acid (SA) contents and cholinesterase activity in cattle naturally infected with B. bigemina. An infected group comprised of 20 crossbred Holstein cattle (3–4 years old) were diagnosed to be positive by both microscopy and nested PCR assay. The infected animals were subdivided into two groups according to their parasitemia rates (<20 % and>20 %). Furthermore, 10 healthy cattle were included as the control. The infection caused severe anemia in a parasitemia-burden dependent fashion. The activities of catalase and glucose-6-phosphate dehydrogenase as well as the levels of TAC, zinc, selenium, copper and manganese were significantly decreased as the parasitemia increased, accordingly. However, the activity of superoxide dismutase as well as the levels of malondialdehyde, protein carbonylation, DNA damage and iron, were significantly elevated in a parasitemeia-burden dependent manner. Additionally, glutathione peroxidase activity was significantly elevated with the lower rate of parasitemia, but the higher rate had no significant effect as compared to control. Moreover, total, protein and lipid binding SA contents were significantly increased but the activities of acetylcholinesterase and butyrylcholinesterase were significantly reduced, parasitemia dependently. Conclusively, the infection was remarkably associated with the induction of anemia, oxidative stress and inflammation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.