Abstract
The actively water-cooled in-vessel components (IVCs) of the stellarator Wendelstein 7-X consist of the divertor, the first wall protection components, the port liners, each designed for different loading conditions, and the associated pipework, the control coils, the cryo-pump system, the Glow discharge electrodes, and a set of diagnostics. The divertor, designed for high heat fluxes (HHFs), is a set of 10 target and baffle units arranged along the plasma surface. The design and production of these HHF components is a challenging task. The divertor target elements, which are based on flat carbon-carbon fiber composite tiles bonded via active metal casting onto CuCrZr cooling structures required intensive development and testing to reach a reliable performance; removing, under stationary conditions, 10 MW/m2. Industrially manufactured high quality target elements have been delivered and assessed, and the process of incorporating them into assembly units, so-called modules, has begun. The time scale for the completion of the HHF divertor has been held for the last four years and the final delivery of the HHF divertor is still planned in 2017. In parallel to the realization of the divertor, most of the remaining IVCs have been defined, developed, designed, and fabricated and the installation of many of these components has begun. Some of these components can also be expected, for a short period of time, to receive high heat loads approaching those of the divertor. These components will be described, in detail, from conception to realization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.