Abstract

Statocytes from plant root caps are characterized by a polar arrangement of cell organelles and sedimented statoliths. Cortical microtubules and actin microfilaments contribute to development and maintenance of this polarity, whereas the lack of endoplasmic microtubules and prominent bundles of actin microfilaments probably facilitates sedimentation of statoliths. High-resolution video microscopy shows permanent motion of statoliths even when sedimented. After immunofluorescence microscopy using antibodies against actin and myosin II the most prominent labeling was observed at and around sedimented statoliths. Experiments under microgravity have demonstrated that the positioning of statoliths depends on the external gravitational force and on internal forces, probably exerted by the actomyosin complex, and that transformation of the gravistimulus evidently occurs in close vicinity to the statoliths. These results suggest that graviperception occurs dynamically within the cytoplasm via small-distance sedimentation rather than statically at the lowermost site of sedimentation. It is hypothesized that root cap cells are comparing randomized motions with oriented motions of statoliths and thereby perceiving gravity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.