Abstract

Space experiments have offered a unique opportunity to analyse the mechanism of gravisensing in plant roots. It has been shown that the strict structural polarity of statocytes observed on the ground is perturbed in microgravity: the amyloplasts move towards the proximal half of the cell and, at least in some cases, the nucleus becomes located further away from the (proximal) plasma membrane. It has thus been demonstrated that the amyloplasts do not move freely in the cytoplasm. Experiments using cytochalasin B (or D) have indicated that these organelles are attached to the actin network, probably by motor proteins. These findings have led to a new hypothesis on gravisensing the basis of which is that the tension in the actin filaments resulting from interaction with the statoliths would be transmitted to stretch-activated ion channels located in the plasma membrane (Sievers et al., 1991, In: Lloyd (ed) The cytoskeletal basis of plant growth and form, Academic Press, London New York, pp 169-182). Recently, it has been shown that the sensitivity of roots grown under 1 g conditions in orbit is less than that of roots grown in microgravity or under simulated weightlessness on clinostats. Since the location of the amyloplasts in microgravity is different from that in 1 g, the greater sensitivity observed could be due to different tensions in the actin network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call