Abstract

Inspired by Lefschetz thimble theory, we treat Quantum Field Theory as a statistical theory with a complex Probability Distribution Function (PDF). Such complex-valued PDFs permit the violation of Bell-type inequalities, which cannot be violated by a real-valued, non-negative PDF. In this paper, we consider the Classical-Statistical approximation in the context of Bell-type inequalities, viz. the familiar (spatial) Bell inequalities and the temporal Leggett-Garg inequalities. We show that the Classical-Statistical approximation does not violate temporal Bell-type inequalities, even though it is in some sense exact for a free theory, whereas the full quantum theory does. We explain the origin of this discrepancy, and point out the key difference between the spatial and temporal Bell-type inequalities. We comment on the import of this work for applications of the Classical-Statistical approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.