Abstract

Results from the theory ofU-statistics are used to characterize the microcanonical partition function of theN-vortex system in a rectangular region for largeN, under various boundary conditions, and for neutral, asymptotically neutral, and nonneutral systems. Numerical estimates show that the limiting distribution is well matched in the region of major probability forN larger than 20. Implications for the thermodynamic limit are discussed. Vortex clustering is quantitatively studied via the average interaction energy between negative and positive vortices. Vortex states for which clustering is generic (in a statistical sense) are shown to result from two modeling processes: the approximation of a continuous inviscid fluid by point vortex configurations; and the modeling of the evolution of a continuous fluid at high Reynolds number by point vortex configurations, with the viscosity represented by the annihilation of close positive-negative vortex pairs. This last process, with the vortex dynamics replaced by a random walk, reproduces quite well the late-time features seen in spectral integration of the 2d Navier-Stokes equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call