Abstract
When a rigid rough solid slides on a rigid rough surface, it experiences a random motion in the direction normal to the average contact plane. Here, through simulations of the separation at single-point contact between self-affine topographies, we characterize the statistical and spectral properties of this normal motion. In particular, its rms amplitude is much smaller than that of the equivalent roughness of the two topographies and depends on the ratio of the slider's lateral size over a characteristic wavelength of the topography. In addition, due to the nonlinearity of the sliding contact process, the normal motion's spectrum contains wavelengths smaller than the smallest wavelength present in the underlying topographies. We show that the statistical properties of the normal motion's amplitude are well captured by a simple analytic model based on the extreme value theory framework, extending its applicability to sliding-contact-related topics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.