Abstract

In the presence of additive Gaussian noise, the statistics of the nonlinear Fourier transform (NFT) of a pulse are not yet completely known in closed form. In this paper, we propose a novel approach to study this problem. Our contributions are twofold: first, we extend the existing Fourier Collocation (FC) method to compute the whole discrete spectrum (eigenvalues and spectral amplitudes). We show numerically that the accuracy of FC is comparable to the state-of-the-art NFT algorithms. Second, we apply perturbation theory of linear operators to derive analytic expressions for the joint statistics of the eigenvalues and the spectral amplitudes when a pulse is contaminated by additive Gaussian noise. Our analytic expressions closely match the empirical statistics obtained through simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.