Abstract

Results of large-eddy simulations of shallow, quasi-steady, shear-less convection in the Martian boundary layer are presented and discussed. In the considered three cases, turbulence is forced by the radiative flux divergence, prescribed as given functions of height, and the strength of the surface heat flux. It is constrained by the temperature inversion at the boundary-layer top. The resulting convective boundary layer exhibits horizontal cellular structures. The presence of radiative heating causes dimensionless statistics of turbulence to depend on the parameter F, defined in terms of the integrated radiative and turbulent heating rates in the boundary layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call