Abstract
We show that the transition from regular to chaotic spectral statistics in interacting many-body quantum systems has an unambiguous signature in the distribution of Schmidt coefficients dynamically generated from a generic initial state, and thus limits the efficiency of the time-dependent density-matrix renormalization-group algorithm. We investigate this mechanism on the tilted Bose-Hubbard model; however the emergence of universal spectral properties allows translation of our conclusions to generic many-body quantum systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.