Abstract

We study at the microscopic level the dynamics of a one-dimensional, gravitationally interacting sticky gas. Initially, N identical particles of mass m with uncorrelated, randomly distributed velocities fill homogeneously a finite region of space. It is proved that at a characteristic time a single macroscopic mass is formed with certainty, surrounded by a dust of nonextensive fragments. In the continuum limit this corresponds to a single shock creating a singular mass density. The statistics of the remaining fragments obeys the Poisson law at all times following the shock. Numerical simulations indicate that up to the moment of macroscopic aggregation the system remains internally homogeneous. At the short time scale a rapid decrease in the kinetic energy is observed, accompanied by the formation of a number \( \sim \sqrt N \) of aggregates with masses \( \sim m\sqrt N \).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.