Abstract
For the given logical calculus we investigate the proportion of the number of true formulas of a certain length n to the number of all formulas of such length. We are especially interested in asymptotic behavior of this fraction when n tends to infinity. If the limit exists it is represented by a real number between 0 and 1 which we may call the density of truth for the investigated logic. In this paper we apply this approach to the intuitionistic logic of one variable with implication and negation. The result is obtained by reducing the problem to the same one of Dummett's intermediate linear logic of one variable (see [2]). Actually, this paper shows the exact density of intuitionistic logic and demonstrates that it covers a substantial part (more than 93%) of classical prepositional calculus. Despite using strictly mathematical means to solve all discussed problems, this paper in fact, may have a philosophical impact on understanding how much the phenomenon of truth is sporadic or frequent in random mathematics sentences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.