Abstract
We investigate statistical properties of vorticity fluctuations in fully developed turbulence, which are known to exhibit a strong intermittent behavior. Taking as the starting point the Navier-Stokes equations with a random force term correlated at large scales, we obtain in the high Reynolds number regime a closed analytical expression for the probability distribution function of an arbitrary component of the vorticity field. The central idea underlying the analysis consists in the restriction of the velocity configurational phase-space to a particular sector where the rate of strain and the rotation tensors can be locally regarded as slow and fast degrees of freedom, respectively. This prescription is implemented along the Martin-Siggia-Rose functional framework, whereby instantons and perturbations around them are taken into account within a steepest-descent approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.