Abstract

This paper investigates the statistics of two-dimensional grain microstructures during grain growth under anisotropic grain boundary (GB) energies and mobilities. We employ the threshold dynamics method, which allows for unparalleled computational speed, to simulate the full-field curvature motion of grain boundaries in a large polycrystal ensemble. Two sets of numerical experiments are performed to explore the effect of GB anisotropy on the evolution of microstructure features. In the first experiment, we focus on abnormal grain growth and find that GB anisotropy introduces a statistical preference for certain grain orientations. This leads to changes in the overall grain size distribution from the isotropic case. In the second experiment, we examine the development of texture and the growth of twin boundaries for different initial microstructures. We find that texture development and twin growth are more pronounced when the initial microstructure has a dominant fraction of high-angle grain boundaries. Our results suggest effective GB engineering strategies for improving material properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.