Abstract
We investigate the estimation of the extreme value index when the data are subject to random censorship. We prove, in a unified way, detailed asymptotic normality results for various estimators of the extreme value index and use these estimators as the main building block for estimators of extreme quantiles. We illustrate the quality of these methods by a small simulation study and apply the estimators to medical data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.