Abstract
In the reliability engineering and design of offshore structures, probabilistic approaches are frequently adopted. They require the estimation of extreme quantiles of oceanographic data based on the statistical information. Due to strong correlation between such random variables as, e.g., wave heights and wind speeds (WS), application of the multivariate, or bivariate in the simplest case, extreme value theory is sometimes necessary. The paper focuses on the extension of the average conditional exceedance rate (ACER) method for prediction of extreme value statistics to the case of bivariate time series. Using the ACER method, it is possible to provide an accurate estimate of the extreme value distribution of a univariate time series. This is obtained by introducing a cascade of conditioning approximations to the true extreme value distribution. When it has been ascertained that this cascade has converged, an estimate of the extreme value distribution has been obtained. In this paper, it will be shown how the univariate ACER method can be extended in a natural way to also cover the case of bivariate data. Application of the bivariate ACER method will be demonstrated for measured coupled WS and wave height data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Offshore Mechanics and Arctic Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.