Abstract
In some previous articles, we defined several partitions of the total kinetic energy T of a system of N classical particles in ℝ d into components corresponding to various modes of motion. In the present paper, we propose formulas for the mean values of these components in the normalization T = 1 (for any d and N) under the assumption that the masses of all the particles are equal. These formulas are proven at the “physical level” of rigor and numerically confirmed for planar systems (d = 2) at 3 ⩽ N ⩽ 100. The case where the masses of the particles are chosen at random is also considered. The paper complements our article of 2008 [Russian J. Phys. Chem. B, 2(6):947–963] where similar numerical experiments were carried out for spatial systems (d = 3) at 3 ⩽ N ⩽ 100.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.