Abstract

Abstract C-band polarimetric radar measurements spanning two wet seasons are used to study the effects of the large-scale environment on the statistical properties of stratiform and convective rainfall around Darwin, Australia. The rainfall physical properties presented herein are the reflectivity fields, daily rainfall accumulations and raining area, rain rates, and drop size distribution (DSD) parameters (median volume diameter and “normalized” intercept parameter). Each of these properties is then analyzed according to five different atmospheric regimes and further separated into stratiform or convective rain categories following a DSD-based approach. The regimes, objectively identified by radiosonde thermodynamic and wind measurements, represent typical wet-season atmospheric conditions: the active monsoon regime, the “break” periods, the “buildup” regime, the trade wind regime, and a mixture of inactive/break periods. The large-scale context is found to strongly modulate rainfall and cloud microphysical properties. For example, during the active monsoon regime, the daily rain accumulation is higher than in the other regimes, while this regime is associated with the lowest rain rates. Precipitation in this active monsoon regime is found to be widespread and mainly composed of small particles in high concentration compared to the other regimes. Vertical profiles of reflectivity and DSD parameters suggest that warm rain processes are dominant during this regime. In contrast, rainfall properties in the drier regimes (trade wind/buildup regimes) are mostly of continental origin, with rain rates higher than in the moister regimes. In these drier regimes, precipitation is mainly formed of large raindrops in relatively low concentration due to a larger contribution of the ice microphysical processes on the rainfall formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call