Abstract
We study the statistical properties of the complex generalization of Wigner time delay τ_{W} for subunitary wave-chaotic scattering systems. We first demonstrate theoretically that the mean value of the Re[τ_{W}] distribution function for a system with uniform absorption strength η is equal to the fraction of scattering matrix poles with imaginary parts exceeding η. The theory is tested experimentally with an ensemble of microwave graphs with either one or two scattering channels and showing broken time-reversal invariance and variable uniform attenuation. The experimental results are in excellent agreement with the developed theory. The tails of the distributions of both real and imaginary time delay are measured and are also found to agree with theory. The results are applicable to any practical realization of a wave-chaotic scattering system in the short-wavelength limit, including quantum wires and dots, acoustic and electromagnetic resonators, and quantum graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.