Abstract

The statistical response of a Kerr black hole to incoming quantum radiation has heretofore been studied by the methods of maximum entropy or quantum field theory in curved spacetime. Neither approach pretends to take into account the quantum structure of the black hole itself. To address this last issue we calculate here the conditional probability distribution associated with the hole's response by assuming that the horizon area has a discrete quantum spectrum, and that its quantum evolution corresponds to jumps between adjacent area eigenvalues, possibly occurring in series, with consequent emission or absorption of quanta, possibly in the same mode. This "atomic" model of the black hole is implemented in two different ways and recovers the previously calculated radiation statistics in both cases. The corresponding conditional probably distribution is here expressed in closed form in terms of an hypergeometric function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.