Abstract

Magnetic flux avalanches in Josephson junctions that include superconductor-insulator-superconductor (SIS) tunnel junctions and are magnetized at temperatures lower than approximately 5 K have been studied in detail. Avalanches are of stochastic character and appear when the magnetic field penetration depth λ into a junction becomes equal to the length a of the Josephson junction with a decrease in the temperature. The statistical properties of such avalanches are presented. The size distribution of the avalanches is a power law with a negative noninteger exponent about unity, indicating the self-organized criticality state. The self-organized criticality state is not observed in Josephson junctions with a superconductor-normal metal-superconductor (SNS) junction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.