Abstract

A quantification of the magnetic complexity of active regions using a fractal dimension measure is presented. This fully automated approach uses full-disk MDI magnetograms of active regions from a large data set (2742 days of the SOHO mission, 9342 active region images) to compare the calculated fractal dimension of each region to both its Mount Wilson classification and flare rate. Each Mount Wilson class exhibits a similar fractal dimension frequency distribution, possibly suggesting a self-similar nature of all active regions. Solar flare productivity exhibits an increase in both the frequency and GOES X-ray magnitude of flares from regions with higher fractal dimension. Specifically, a lower threshold fractal dimension of 1.2 and 1.25 exists as a necessary, but not sufficient, requirement for an active region to produce M- and X-class flares, respectively, within 24 hr of the observation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call