Abstract

AbstractIn the present article we study the average of Lipschitz‐Killing (LK) curvatures of the excursion set of a stationary isotropic Gaussian field X on . The novelty is that the field can be nonstandard, that is, with unknown mean and variance, which is more realistic from an applied viewpoint. To cope with the unknown location and scale parameters of X, we introduce novel fundamental quantities called effective level and effective spectral moment. We propose unbiased and asymptotically normal estimators of these parameters. From these asymptotic results, we build a test to determine if two images of excursion sets can be compared. This test is applied on both synthesized and real mammograms. Meanwhile, we establish the consistency of the empirical variance estimators of the third LK curvature under a weak condition on the correlation function of X.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.