Abstract

Unvoiced phonemes have significant presence in spoken English language. These phonemes are hard to classify, due to their weak energy and lack of periodicity. Sound textures such as sound made by a flowing stream of water or falling droplets of rain have similar aperiodic properties in temporal domain as unvoiced phonemes. These sounds are easily differentiated by a human ear. Recent studies on sound texture analysis and synthesis have shown that the human auditory system perceives sound textures using simple statistics. These statistics are obtained by decomposing sounds using a set of filter-banks and computing the moments of the filter responses, along with their correlation values. In this work we investigate if the above mentioned statistics, which are easy to extract, can also be used as features for classifying unvoiced sounds. To incorporate the moments and correlation values as features, a framework containing multiple classifiers is proposed. Experiments conducted on the TIMIT dataset gave an accuracy on par with the latest reported in the literature, with lesser computational cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.