Abstract

One of the first tasks in language acquisition is word segmentation, a process to extract word forms from continuous speech streams. Statistical approaches to word segmentation have been shown to be a powerful mechanism, in which word boundaries are inferred from sequence statistics. This approach requires the learner to represent the frequency of units from syllable sequences, though accounts differ on how much statistical exposure is required. In this study, we examined the computational limit with which words can be extracted from continuous sequences. First, we discussed why two occurrences of a word in a continuous sequence is the computational lower limit for this word to be statistically defined. Next, we created shortsyllable sequences that contained certain words either two or four times. Learners were presented with these syllable sequences one at a time, immediately followed by a test of the novel words from these sequences. We found that, with the computationally minimal amount of two exposures, words were successfully segmented from continuous sequences. Moreover, longer syllable sequences providing four exposures to words generated more robust learning results. The implications of these results are discussed in terms of how learners segment and store the word candidates from continuous sequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call