Abstract
Drought is part of natural climate variability and ranks the first natural disaster in the world. Drought forecasting plays an important role in mitigating impacts on agriculture and water resources. In this study, a drought forecast model based on the random forest method is proposed to predict the time series of monthly standardized precipitation index (SPI). We demonstrate model application by four stations in the Haihe river basin, China. The random‐forest‐ (RF‐) based forecast model has consistently shown better predictive skills than the ARIMA model for both long and short drought forecasting. The confidence intervals derived from the proposed model generally have good coverage, but still tend to be conservative to predict some extreme drought events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.