Abstract

The statistical uncertainty of the long-term distribution of wind- and wave-induced hot-spot stress ranges in multi-planar tubular joints of a fixed jacket offshore wind turbine designed for a North Sea site in a water depth of 70m has been assessed in this paper. The dynamic response of the jacket support structure due to wind and wave loads is calculated using a decoupled procedure. Hot-spot stresses at failure-critical locations of each reference brace for 4 different tubular joints (DK, DKT, X-type) are derived by summation of the single stress components from axial, in-plane and out-plane action. The effects of planar and non-planar braces are also considered. A two-parameter Weibull function is used to fit the long-term statistical distribution of hot-spot stress ranges by combination of time domain simulation for representative environmental conditions (wind / sea states) in operational condition of the wind turbine. The statistical uncertainty of the Weibull distribution of hot-spot stress ranges and the two parameters defining the Weibull distribution is assessed, based on 20 simulations for each representative environmental condition. The contributions to the uncertainty from wind loads and wave loads are analyzed by considering 3 different load cases: wind loads only, wave loads only and combination of wind and wave loads. The sensitivity of the long-term distribution of hot-spot stress ranges due to their stress components is also assessed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call