Abstract

We resolve the long standing question of temperature dependence of uniformly moving bodies by means of a quantum statistical treatment centred on the zeroth law of thermodynamics. The key to our treatment is the result, established by Kossakowski et al, that a macroscopic body behaves as a thermal reservoir with well-defined temperature, in the sense of the zeroth law, if and only if its state satisfies the Kubo-Martin-Schwinger (KMS) condition. In order to relate this result to the relativistic thermodynamics of moving bodies, we employ the Tomita-Takesaki modular theory to prove that a state cannot satisfy the KMS conditions with respect to two different inertial frames whose relative velocity is non-zero. This implies that the concept of temperature stemming from the zeroth law is restricted to states of bodies in their rest frames and thus that there is no law of temperature transformations under Lorentz boosts. The corresponding results for nonrelativistic Galilean systems have also been established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.