Abstract
Experimental adsorption isotherms of five n-paraffins (ethane, propane, butane, pentane, and hexane) in 5A zeolite were described by means of a statistical thermodynamics model for linear adsorbates (MLA) developed by Ramirez-Pastor et al. (1999) and compared with the well-known multisite Langmuir model (MSL) of Nitta et al. (1984). The experimental data, obtained by different authors in a wide range of temperatures and pressures, were correlated by using an algorithm of multiple fitting. Two main conclusions were drawn from the analysis of experimental data: (i) for small molecules (ethane, propane), MLA is the more accurate model, validating the hypothesis of the linear rigid character of the adsorbate and reinforcing previous results obtained from the analysis of computational experiments developed for dimers and linear trimers; (ii) for large molecules (n-butane, n-pentane, n-hexane), the better performance of the MSL model suggests that the admolecules adsorb in a nonlinear structure. The isosteric heat of adsorption dependence on the number of carbons obtained from our study, ranging between 23.84 kJ/mol for ethane and 59.26 kJ/mol for hexane, showed a very good agreement with previous results reported in the literature, confirming the consistency of our analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.