Abstract

Information in the time distribution of points in a state space reconstructed from observed data yields a test for ``nonstationarity.'' Framed in terms of a statistical hypothesis test, this numerical algorithm can discern whether some underlying slow changes in parameters have taken place. The method examines a fundamental object in nonlinear dynamics, the geometry of orbits in state space, with corrections to overcome difficulties in real dynamical data which cause naive statistics to fail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.