Abstract
AbstractHot flow anomalies (HFAs) and foreshock bubbles (FBs) are frequently observed in Earth's foreshock, which can significantly disturb the bow shock and therefore the magnetosphere‐ionosphere system and can accelerate particles. Previous statistical studies have identified the solar wind conditions (high solar wind speed and high Mach number, etc.) that favor their generation. However, backstreaming foreshock ions are expected to most directly control how HFAs and FBs form, whereas the solar wind may partake in the formation process indirectly by determining foreshock ion properties. Using Magnetospheric Multiscale mission and Time History of Events and Macroscale Interactions during Substorms mission, we perform a statistical study of foreshock ion properties around 275 HFAs and FBs. We show that foreshock ions with a high foreshock‐to‐solar wind density ratio (>∼3%), high kinetic energy (>∼600 eV), large ratio of kinetic energy to thermal energy (>∼0.1), and large ratio of perpendicular temperature to parallel temperature (>∼1.4) favor HFA and FB formation. We also examine how these properties are related to solar wind conditions: high solar wind speed and oblique bow shock (angle between the interplanetary magnetic field and the bow shock normal ) favor high kinetic energy of foreshock ions; foreshock ions have large ratio of kinetic energy to thermal energy at large (>30°); small (<30°), high Mach number, and closeness to the bow shock favor a high foreshock‐to‐solar wind density ratio. Our results provide further understanding of HFA and FB formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.