Abstract

AbstractWe consider families of random products of close-by Anosov diffeomorphisms, and show that statistical stability and linear response hold for the associated families of equivariant and stationary measures. Our analysis relies on the study of the top Oseledets space of a parametrized transfer operator cocycle, as well as ad-hoc abstract perturbation statements. As an application, we show that, when the quenched central limit theorem (CLT) holds, under the conditions that ensure linear response for our cocycle, the variance in the CLT depends differentiably on the parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.